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Abstract

Introduced is a lattice-gas with long-range 2-body interactions. An
effective inter-particle force is mediated by momentum exchanges. There

exists the possibility of having both attractive and repulsive interactions
using finite impatt parameter collisions. There also exists an interesting
possibility of coupling these long-range interactions to a heat bath. A

fixed temperature heat bath induces a permanent net attractive interpar-
ticle potential, but at the expense of reversibility. Thus the long-range

dynamics is a kind of a Monte Carlo Kawasaki updating scheme. The

model has a PpT equation of state. Presented are analytical and numeri-
cal results for a lattice-gas fluid governed by a nonideal equation of state.

The model's complexity is not much beyond that of the FHP lattice-gas.
It is suitable for massively parallel processing and may be used to study

critical phenomena in large systems.

1 Introduction

Nonideal fluids, with dynamics governed by reversible physical laws, undergo

phase transitions. This fact about fluids indicates the possibility that lattice-gas

fluid models, with dynamics governed by reversible rules [1], may also undergo

phase transitions. The Ising model is the most well known computational model

with an order-disorder transition. Reversible Ising models using energy bankers,

in a microcanonical ensemble, are known [2, 3]. Yet it is an open question as to

whether or not there exists a reversible momentum-conserving lattice-gas model

of a multiphase fluid.
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In molecular dynamics one simulates a many-body system of particles with

continuous interaction potentials where the particles have continuous positions

and momenta. In lattice-gas dynamics the particles' positions and momenta are

discrete and motion is constrained to a spacetime lattice. Interparticle potentials

can be modeled by including long-range interactions in the lattice-gas dynamics

with a discrete momentum exchange between particles. The use of momentum

exchange was introduced by Kadanoff and Swift in a Master-equation approach

[4]. The use of negative momentum exchanges in long-range interactions was

first done in a lattice-gas model by Appert and Zaleski [5]. This nonthermal

model has a liquid-gas coexistence phase; there is a Pp equation of state. A

method for modeling interparticle potentials using only local interactions was

introduced by Chen et al. [6]. There is an Ising interaction between the rest

particles of the FHP lattice-gas model[7] with rest particles at the neighbor-

ing sites. In this way a local configurational energy is associated with the rest

particles. Speed one particles can transition to a rest state with a certain Boltz-

mann probability, e-0tE. The inverse transition is also possible and the model

obeys detailed-balance. Chen et al. observed an order-disorder transition as

the system has a nonideal equation of state. It is a purely local model being a

combination of a lattice-gas automaton and a Monte Carlo Ising lattice gas. In

this way momentum conservation is added to Ising dynamics so the model can

therefore be used to view the kinetics, even near the critical point.

The lattice-gas model with long-range interactions presented here is a finite

temperature extension of Appert and Zaleski's zero temperature model. The

first ingredient added is repulsive long-range collisions. Both discrete negative

and positive momentum exchanges occur between particles. The second ingre-

dient added is a finite temperature heat-bath, that is a heat-bath with a certain

non-zero fractional occupation. It is possible to bias the finite impact parame-

ter collisions so there is a net attractive interparticle potential. This is done by

coupling the long-range collisions to a heat bath - attractive collisions cause

a transition from a high potential energy state to a low one and emit units of

heat whereas repulsive collisions cause the opposite transition and absorb heat.
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When a disordered lattice-gas state is in contact with a low temperature bath,

spinoidal decomposition occurs. The fractional occupation of the heat-bath de-

termines the likelihood of long-range interactions in a simple way. The phase

separation occurs if the heat bath filling fraction is held fixed 1 . Its nonideal

PpT equation of state is derived and compared to numerical simulation.

When the lattice-gas dynamics is strictly reversible, there exists an inherent

limitation that the phase separation process can occur only for a short period

of time. The lattice-gas fluid quickly becomes a neutral fluid, with finite impact

parameter collisions. So added to the usual FHP type on-site collisions are an

equivalent set of finite impact parameter collisions. Balancing the interactions

ensures detailed balance, and in the context of the multiphase model presented

below, this is like the infinite temperature limit. The appendix contains a

description of the reversible lattice-gas with balanced attractive and repulsive

collisions and a numerical result illustrating the characteristic transient time.

This paper is organized into three main sections. §2 very briefly describes

the local particle dynamics of the lattice-gas method. §3 describes the long-

range lattice-gas and offers a simple theoretical result in the Boltzmann limit.

Finally, §4 presents some numerical results obtained with the model. A closing

discussion of the main points of this paper is given in §5. The appendix contains

a formal construction of a long-range lattice-gas with a single species of particles

obeying detailed balance.

2 Lattice-Gas Automata

An extremely abridged description of local lattice-gas dynamics is given here

since descriptions can be found elsewhere [8, 9]. Particles, with mass m, prop-

agate on a spacetime lattice with N spatial sites, unit cell size 1, time unit r,

with speed c = L. A particle's state is completely specified at some time, t,

by specifying its position on the lattice, x, and its momentum, p = mc~a with

lattice vectors e. for a = 1, 2, ... , B. The particles obey Pauli exclusion since

'Note that holding the heat bath at fixed fractional occupation below 0.5 breaks detailed
balance.
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only one particle can occupy a single state at a time. The total number of con-

figurations per site is 2 B. The total number of states available in the system is

2 BN. The lattice-gas cellular automaton equation of motion is

n.(x + 16.,t + r) = n,(x,t) + Q(i(x, t)), (1)

where the particle occupation variable and collision operator are denoted by na

and Qa, respectively.

For a two-dimensional hexagonal lattice, the spatial coordinates of the lat-

tice sites may be expressed as follows xj = r3j, i - 1 mod 2j) where i and j

are rectilinear indices that specify the memory array locations used to store the

lattice-gas site data. Given a particle at site (i, j), it may be shifted along vector

= rt to a remote site (i', j')a by the following mapping: (i + r+1 - mod 2j mod 2r, j r

(i - - mod 2j mod 2r,j T= r) 2,5, (i T- r,j)3,6 . These streaming relations are

equivalent to memory address offsets. The modulus operator is base 2 because

even and odd rows must be shifted as a hexagonal lattice is embedded into a

square lattice.

3 Long-Range 2-Body Interactions

An interparticle potential, V(x - x'), acts on particles spatially separated by

a fixed distance, x - x' = 2r. An effective interparticle force is caused by a

non-local exchange of momentum. Momentum conservation is violated locally,

yet it is exactly conserved in the global dynamics.

For the case of an attractive interaction, there exists a bound states in which

two particles orbit one another. Since the particle dynamics are constrained

by a crystallographic lattice we expect polygonal orbits. In figure la we have

depicted two such orbits for a hexagonal lattice-gas. The radius of the orbit is r.

Two-body finite impact parameter collisions are depicted in figures lb and lc.

Momentum exchanges occur along the principle directions. The time-reversed

partners of the collisions in figures l b are included in the model. The interaction

potential is not spherically symmetric, but has an angular anisotropy. In general,

4



. . " .NK..

2. --.

(a)

Figure 1: (a) Bound state orbits where the dotted path indicates the particle's closed
trajectory; (b) JApI = I with one unit of angular momentum, a counter-clockwise attractive
collision and its repulsive conjugate; and (c) JApI =- 2 with zero angular momentum collision
conjugates. Not included in the figure are the time-reversed partners of (b).
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it acts only on a finite number of points on a shell of radius r. The number of

lattice partitions necessary per site is half the lattice coordination number, since

two particles lie on a line. Though microscopically the potential is anisotropic,

in the continuum limit numerical simulation done by Appert, Rothman, and

Zaleski indicates isotropy is recovered [10].

Constraint equations2 for momentum conservation and parallel and perpen-

dicular momentum exchange are respectively

-• - = 0 (2)

(6. -Cap-f,5m+ ) -r = 2Ap (3)

(C-&-,+46) x = 0 (4)

where Ap is the momentum change per site due to long-range collisions. The

sum and difference of (2) and (3) reduce to

S- (60)y = LPp & - = -Ap. (5)

The possible non-zero values of a site's momentum change may be Ap = ±1

and ±2. As mentioned, the cases for Ap < 0 led to bound states with angular

momentum 0 and 1. To satisfy (5), consider the case where (6.), =

and (6p), = -(6.),. 3 The possible collisions where ý = e3 are depicted in

figure 1. The reversible interactions are 2-body collisions with a finite impact

parameter of 2r. For r = 0, they reduce to the 2-body collisions in the FHP

lattice-gas: the jApj = 1 collisions reduce to ±L= rotations of momenta states,

and the jApI = 2 collisions reduce to the identity operation.

Let V[d(x)] represent the potential energy due to long-range interactions,

where d(x) is the probability of finding a particle at position x. For a 2-body

interaction to occur at x and x', one must count the chance of having two

particles and two holes at the right locations, so in the Boltzmann limit one
2

We are simplifying this development by assuming a single speed lattice-gas. Consequently
we do not have to explicitly write a term to conserve energy since here energy conservation
follows by default.

3
Alternatively one could have chosen (6)y = (64)v and (69) =
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Figure 2: Potential energy versus particle density in the zero temperature limit. Letting
d -> ?p -_1 then V(?k) = I - 1,

2 
+ 04 which has a Landau-Ginsburg form.

may write a probability of collision, P(x, x'; v, v'), as

P(x,x'; v,v') = d(x)(1 - d(x))d(x')(1 - d(x'))5(IV' - VIi) (6)

and if the system is uniformly filled, this simplifies to

P(x, x'; v, v') = d2 (1 - d)2 5v',. (7)

Letting m, c, r = Ix - x'I, and 1 denote the particle mass, particle velocity, 2-

body interaction range, and lattice cell size, one may write the potential energy

as

V(d) = a mc2B (r) P(x, X';v, V') (8)S2

= a B(r) d2(I - d)26,, (9)
2 1

2 
--

where the value of the coefficient a depends on the magnitudes of momenta

exchanged. Here d ranges from 0 to 1, and is just the particle filling fraction.

V(d) has two minima, at d = 0 and d = 1, see figure 2.
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Figure 3: Examples of long-range collisions that locally conserve mass, momentum, and
energy. Iapj = ±1 interactions along the r0-direction coupled to a heat bath: (a) attractive
case; and (b) its adjoint, repulsive case. Transitions probabilities for these collisions have a

Monte Carlo form as they are biased by the density of heat-bath particles, rendered here with
wavy lines. Head of the gray arrows indicates particles entering the sites at ro and -r 0 at
time t. Tail of the black arrows indicates particles leaving those sites at time t + or.

One may consider a slightly more complicated interaction, where the 2-body

collisions are coupled to a second kind of particle whose filling fraction is denoted

by h. In the slightly more complicated interaction, the form of V(d) given still

holds, but only for h = 0. Here is the slightly more complicated version of

things. The complete form of the interaction energy is

V(d, h) = 'mc2B [d2(j - d) 2(1 - h) 2 - d2(1 - d)2h 2]. (10)

The first term is two d's transitioning to a lower configurational energy state

and thus emitting two h's to conserve energy. The second term is two d's

transitioning to a higher configurational energy state by absorbing two h's.

Local conservation of momentum and energy is recovered. For convenience we

write

V(d,h) = 'mc2B [d2(1 - d)2(l - 2h)] .(11)
S2

From (11), V(d, h) = 0 for h = . Since the hath-bath particles are fermi-dirac

distributed, we define the effective temperature as kBT = e0 (log -hh)-:, and

2 corresponds to T = o and h = 0 corresponds to T = 0. Numerical

simulation corroborates this. The pressure, p, in the gas is written

p(d, h) = mc2Bd + V(d, h) (12)
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where c8 ' is the sound speed. This is the non-ideal equation of state that is

responsible for the liquid-gas phases observed in numerical simulations of this

system.

4 Simulation Results

The dynamics of the model in contact with a fixed temperature heat bath is

tested by numerical simulation. A coarse-grained mass frequency distribution is

measured after the system has evolved for a fixed amount of time. The lattice-

gas is initialized with a random configuration and allowed to evolve for 500 time

steps for several bath filling fractions: 30% to 20%, 19%, 18%, 5%, and 0%.

Resulting system snapshots are illustrated in figure 4.

If the lattice-gas is above the transition temperature, the particles are uni-

formly spread over the lattice. As the system evolves while in contact with a

finite temperature heat bath coarse-grained 4 x 4 block averages over a 256 x 256

lattice are taken over the lattice-gas number variables to produce a mass fre-

quency distribution for a large number of temperatures and the liquid and gas

densities are found. A mass frequency distribution obtained by this coarse-

grained block averaging procedure is a Gaussian with its mean located exactly

at the initial particle density. A normalized Gaussian fit, centered at particle

density 0.3, is shown in figure 5 as is cross-section plots of the distribution at

different temperatures. As the temperature decreases, the distribution widens

and becomes bimodal. The mean of the low density peak gives the gas phase

density and the mean of the high density peak gives the liquid phase density.

The order parameter for the liquid-gas transition is the difference of the liquid

and gas densities, V = PL - pAG [11].

If the heat-bath temperature is held constant, the dynamics is no longer

reversible. The ordered phase persists and the simulation method becomes

like a Monte Carlo Kawasaki updating scheme (i.e. the exchange of randomly

chosen spins). However, using this long-range interaction method, momentum

is exactly conserved and kinetic information retained. Therefore, the dynamical
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Figure 4: Several lattice-gas configurations obtained after 500 iterations starting from ran-
dom initial 256 x 256 configurations with 30% particle filling. The six configuration are coupled
to a heat-bath with 0, 5, 18, 19, 20, and 30% heat bath filling.
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Long-Range Interaction Coupled to a Heat Bath (4x4 Coarse-Graining)
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Figure 5: Mass frequency distributions obtained by course-grained averaging over the lattice-

gas number variables. 4 × 4 blocking is used on a 256 × 256 hexagonal lattice. Result for
particle filling fraction of 0.3.
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Figure 6: Liquid-gas coexistence curve determined from the particle mass frequency distri-
bution for different heat bath temperatures.
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evolution of the finite temperature multiphase system is accessible, even near the

critical temperature. Figure 6 shows a comparison of numerical simulation data

obtained by this procedure to an analytical calculation done in the Boltzmann

limit by analytically carrying out a Maxwell construction. The Gibbs free energy

of the lattice-gas can be written analytically since the pressure's dependence on

density and temperature is known. With (12) and defining the free energy as

F(d, h) = d dn Op(n, h) (13)J n On )

a Maxwell construction then correctly predicts the liquid and gas phase densi-

ties at any given heat-bath temperature, see figure 6. This mean field type of

calculation itself is very interesting and is a good example of how analytical cal-

culations are possible in simple discrete physical models like lattice-gases. The

result shown in figure 6 is similar to the order parameter curve, magnetization

versus temperature, of an Ising model. Spin up, (M) = +1, and spin down,

(M) = -1, domains are analogous to the liquid and gas phases.

5 Discussion

The model is a simple discretization of molecular dynamics with interparticle

potentials. Because of the model's small local memory requirement, the dynam-

ics of large systems can be implemented on a parallel architecture, as has been

done on the cellular automata machine CAM-8 [12].

The main points of this paper are:

1. Coupling the particle dynamics to a fixed temperature heat-bath sets the

transition probabilities and causes a net attractive interparticle potential in the

macroscopic limit. The heat-bath is comprised of a set of lattice-gas particles

encoding a unit of heat. The heat bath density, h, controls the heat-bath's

temperature by the fermi-dirac distribution, kBT = E,(log lh)-'. The system

possesses a nonideal PpT equation of state. With the model in contact with a

fixed heat-bath, one should classify it as finite temperature model with heat-bath

dynamics similar to a Monte Carlo Kawasaki updating, yet retaining essential
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kinetic features. It is a step toward a more complete long-range lattice-gas that

preserves an interaction energy.

2. The equation of state is known in the Boltzmann limit. A Maxwell

construction predicts the liquid-gas coexistence curve. Van der Waal coefficients

could be determined to map the simulation on to a particular physical liquid-gas

system.

3. With the single speed particles species coupled to a heat-bath in the fash-

ion described above, there is an imperfect tracking of interaction energy. This is

a limitation of this reversible lattice-gas. An improved version of this reversible

lattice-gas model with long-range interactions perhaps could be implemented

(likely with a species of "bound state" particles included) so that simulations

are carried out in a microcanonical ensemble analogous to Ising models with

auxiliary demons introduced by Creutz [3], and Toffoli and Margolus [2].

It is hoped that a lattice-gas model, of the kind presented here, will become a

valuable new tool for analytically and numerically studying the dynamic critical

behavior of multiphase systems.
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A Reversibility-Neutrality Statement

The main thrust of this paper has been to describe a momentum conserving

multiphase lattice-gas. In this appendix a reversible, momentum-conserving

lattice-gas with long-range interactions is analysized. A formalism is presented
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for describing the unitary evolution of a lattice-gas with long-range interactions.

For any reversible computational model a unitary operator maps the compu-

tational state at some time to the state at the next time iteration. This unitary

matrix can be expressed as the exponential of a hermitian operator, a kind of

computational Hamiltonian4 .

Using the notation of multiparticle quantum mechanical systems in the sec-

ond quantized number representation [14], all states of the system are enumer-

ated sequentially by a, = 1 ... N,,~,, where N,.o,5 = BN. For each a there is

an associated site x that is indicated by a subscript. Denote the vacuum state

of the system by 10) where all n,, = 0 for all states a. Using creation and an-

nihilation operators at,, and a,, to respectively create and destroy a particle

in state a at lattice position x, any arbitrary system configuration b with P

particles can be formed by their successive application on the vacuum

P

I H) = ,at, 10), (14)
P= 1

where particle one is in state a, at lattice node x1 , particle two is in state a2

at lattice node x 2, etc. The number operator is A,. =t = To completely

specify the dynamics the local anticommutation relations are required. Since

there is exclusion of boolean particles at a single momentum state, we have

Iaat} 1 (15)

{a.,a.} - 0 (16)

{ata,ato} = 0. (17)

However, the boolean particles are completely independent at different momen-

tum states, and so the nonlocal operators commute

[aP, at']3 0 (18)

[a. = 0 (19)

[at.,ato] 0 (20)

4This mathematical construction is similar to a quantum mechanical description [131.
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for a 0,3.

A unitary evolution operator that describes the complete evolution of the

lattice-gas may be partitioned into a streaming and collisional part, 0 ° and

Uil" respectively. The full system evolution operator is a product of these two

operators 0 = f°o'"t. The operator 0 ° is constructed using a unitary single

exchange operator denoted by ý() All permutations of single boolean par-

ticle states may be implemented by successive application of this momentum-

exchanger. We will use the same symbol, , to denote the permutations

between state a at site x and states /3 at site x. We wish to construct

from the boolean lattice-gas creation and annihilation operators.

We require that *(1) is unitary, ( =(1))2 - 1, that it conserve the number of

particles, N^ 1),N] = 0, and that (')i 0) = 10). It has the form

,(1), = at~a, + /t3,',a + 1 -- a ataqatta . (21)

This can be written in the form

=.CI = 1 - 2N:), = e(. (22)

For a set of N states, {1, 2,... ,N - 1, N}, two CN rotation operators can be

implemented

N-1_•CN -(1) -(1) ... k•) R M(: (23)
= CN- I,NXN-2,N- I =12 N-i,N-i+ (

t=1

N-i

N X12 X23 XN1,N -- X,+1(
jil

that are rotations by ±3- 0• Suppose we pick a subspace to be the set of states,

Pa, with momentum mcta. Then following our construction, we have found a

method to implement a unitary streaming operator, Sa, along direction-a

= jJ k~?j 0le 0  
(25)

The free part of the evolution is then simply

B B

°= H A. = ]i 1- (26)
a=1 a=1 {1,}EP.
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The corresponding kinetic energy part of the Hamiltonian to leading order is

I:°= Z 6t , + t +... (27)
(•X,>

where the sum is over all bonds of the lattice taken over partitions along principle

lattice directions and where for brevitity the following short-hand notation is

used: 1=i E{a,p3 }e? -+ E'•<=x'> when x + lea -+ X'.

The operator U is constructed using a unitary double exchange operator,

denoted by R(2),,, a generalization of the single exchange operator. All permu-

tations of two boolean particles may be implemented by successive application

of this momentum-exchanger, where the permutations for particle one occurs

between states a and f3 at site x and for particle two between states p' and v'

at site x'.

We require that *(2) is unitary, (ký(2))2 - 1, that it conserve the number

of particles, [ N(2), =J - 0, and that k•2)[ 0) = [ 0). A relation identical to (22)

exists for the double boolean exchange operator

(2)(28)¢() =I - 2&wx,., - e (28)•

Let us assume we have a two-particle state -y"a') = at-yt ,, 0), where

ay a or P3, and a' = p' or V'. It has the form

a tc t•,,,Mt,it ,At Atv ,"

(29)

Suppose we pick a subspace to be the set of states, Va, where moment exchanges

-mc~a can occur between two particle pairs. Then a unitary collision opera-

tor, C., in this subspace (with momentum exchanges along a principle lattice

direction) is

C.= ( (30)

{ckS3 gA,v}EV.

The interaction part of the evolution is then simply

B BT 2Vnt' IICa R(2I I
p1-tre1PX-IreaIx--ea ---r (31)

a=1 a=1 {aJ ,,,}EV.
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The corresponding potential energy part of the Hamiltonian to leading order is

E Z &taxhfht•s'hZ, + ,t £Zv,%, + (32)
(xx, ;vv,)

where for brevity the following short-hand notation is used: 2 1

Z (xx';vv') when x + rea -4 x and x - rea -- x'. (27) and (32), imply to leading

order, the full lattice-gas Hamiltonian will have the form

I +" = .... = - + E a.., -c'+' (33)
(XXI) (xx, ;vv,)

The complex conjugate terms arise in (33) because of reversibility and ensure

the hermiticity of the Hamiltonian. If the interaction term in the Hamiltonian

covers all possible attractive interactions, its complex conjugate then covers all

possible repulsive interactions. (33) is a completely general way of specifying

any set of 2-body collisions, and it necessarily describes invertible lattice-gas

dynamics because of the unitarity of the evolution operator.

As the dynamics is reversible, the system quickly moves to a maximal entropy

state where the net attractive interparticle potential vanishes. The liquid-gas

coexistence phase may persist indefinitely given a net attractive interaction. In

a reversible system a net attraction exists for a short while, only so long as

most heat bath states are not populated. Once the heat bath gains a significant

population, only the local interactions remain and consequent diffusion drives

the system back to a disordered phase. The maximal entropy state of the

heat bath occurs at half-filling, h = 1, and consequently at this heat bath

density it cannot encode any more information about heating from the lattice-

gas so the effect of the long-range interaction must become non-existent. This

is consistent with (11), since V(d,h) = 0 for h = ½. The heat bath population

exponentially approaches its maximal entropy state, see figure 7, starting from

a density initially zero; h(t) = 1(1 - e-t/) with the observed time constant,

r = 16.5, obtained by fitting. The time constant, r, can be increased by raising

the number of heat bath states.
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Figure 7: Transient behavior of a reversible lattice-gas with long-range interactions. Particle

density at approximately 1.filling. An exponential increase to half-filling with a time constant

of 16.5r is observed.

19



* ") 4

References

[1] Edward Fredkin and Tommaso Toffoli. Conservative logic. International

Journal of Theoretical Physics, 21(3/4):219-253, 1982.

[2] Tommaso Toffoli and Norman Margolus. Cellular Automata Machines.

MIT Press Series in Scientific Computation. The MIT Press, 1987.

[3] Michael Creutz. Microcanonical cluster monte carlo simulation. Physical

Review Letters, 69(7):1002-1005, 1992.

[4] Leo P. Kadanoff and Jack Swift. Transport coefficients near the critical

point: A master-equation approach. Physical Review, 165(1):310-322, 1967.

[5] C6cile Appert and St6phane Zaleski. Lattice gas with a liquid-gas transi-

tion. Physical Review Letters, 64:1-4, 1990.

[6] Hudong Chen, Shiyi Chen, Gary D. Doolen, Y.C. Lee, and H.A. Rose.

Multithermodynamic phase lattice-gas automata incorporating interparti-

cle potentials. Physical Review A, 40(5):2850-2853, 1989. Rapid Commu-

nications.

[7] Uriel Frisch, Brosl Hasslacher, and Yves Pomeau. Lattice-gas automata

for the navier-stokes equation. Physical Review Letters, 56(14):1505-1508,

1986.

[8] Stephen Wolfram. Cellular automaton fluids 1: Basic theory. Journal of

Statistical Physics, 45(3/4):471-526, 1986.

[9] Uriel Frisch, Dominique d'Humi~res, Brosl Hasslacher, Pierre Lallemand,

Yves Pomeau, and Jean-Pierre Rivet. Lattice gas hydrodynamics in two

and three dimensions. Complex Systems, 1:649-707, 1987.

[10] C~cile Appert, Daniel Rothman, and St6phane Zaleski. A liquid-gas model

on a lattice. In Gary D. Doolean, editor, Lattice Gas Methods: Theory,

Applications, and Hardware, pages 85-96. Special Issues of Physica D,

MIT/North Holland, 1991.

20



[11] H. Eugene Stanley. Introduction to Phase Transitions and Critical Phe-

nomena. International series of monographs on physics. Oxford University

Press, 1971.

[12) Norman Margolus. Cam-8: a computer architecture based on cellular au-

tomata. In Gary D. Doolean, editor, Proceedings of the Pattern Formation

and Lattice-Gas Automata Conference. Fields Institute, American Mathe-

matical Society, 1993. To appear.

[13] Paul Benioff. Quantum mechanical hamiltonian models of turing machines.

Journal of Statistical Physics, 29(3) :515-547, 1982.

[14] Alexander L. Fetter and John Dirk Walecka. Quantum Theory of Many-

Particle Systems. International series in pure and applied physics. McGraw-

Hill Book Company, 1971.

21



Form Approved
REPORTDOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existng data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of Information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense. Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
17-8-2005 REPRINT
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
A Lattice-Gas with Long-Range Interactions Coupled to a Heat

Bath 5b. GRANT NUMBER

6c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S) 5d. PROJECT NUMBER
Jeffrey Yepez 2304

5e. TASK NUMBER
OT

5f. WORK UNIT NUMBER
B1

"7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
Air Force Research Laboratory/VSBYA NUMBER
29 Randolph Road
Hanscom AFB MA 01731-3010

AFRL-VS-HA-TR-2005-1095

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORIMONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited.

13. SUPPLEMENTARY NOTES
REPRINTED FROM: American Mathematics Society, Fields Institute Communication, Vol 6,
Pp 261-274 (1996).

"14. ABSTRACT

Introduced is a lattice-gas with long-range 2-body interactions. An

effective inter-particle force is mediated by momentum exchanges. There

exists the possibility of having both attractive and repulsive interactions

using finite impact parameter collisions. There also exists an interesting

possibility of coupling these long-range interactions to a heat bath. A

fixed temperature heat bath induces a permanent net attractive interpar-

ticle potential, but at the expense of reversibility. Thus the long-range

dynamics is a kind of a Monte Carlo Kawasaki updating scheme. The

model has a PpT equation of state. Presented are analytical and numeri-

cal results for a lattice-gas fluid governed by a nonideal equation of state.

The model's complexity is not much beyond that of the FHP lattice-gas.
It is suitable for massively parallel processing and may be used to study

critical phenomena in large systems.

15. SUBJECT TERMS
Lattice-gas Heat bath
Molecular dynamics

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OFPAGES Jeffrey Yepez

a. REPORT c. THIS PAGE SAR 19b. TELEPHONE NUMBER (include area

UNCLAS UNCLAS UNCLAS code)
781-377-5957

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18


